Showing posts with label land-use. Show all posts
Showing posts with label land-use. Show all posts

Wednesday, November 21, 2018

Tea Time with Amazigh People

Guest post by University of Toronto-Scarborough MEnvSc Candidate Erin Jankovich



 “How do they survive?” This is the question I kept asking myself over and over as I sat sipping my mint tea on the clay floor of an Amazigh cave in the Moroccan mountains. Their faces, hands, tea-kettle and even my cup were layered with dirt and soot. Outside, prevailing winds dusted the lonely peaks of the High Atlas with orange silt. I never expected to stumble across an indigenous settlement when I set out on my hike that day, let alone be invited for tea. This was by no means a fancy tea party, but it certainly was a memorable one.

Women plucked leaves from dry aromatic plants and a man filled a kettle for more tea. A toddler sat beside me and gestured to trade his clay ball for my Nikon. I felt like a fly on the wall in a National Geographic documentary.

I was on to my third cup of tea when a young man broke the silence. “Hello, do you speak English”, I heard from behind me. Dressed in traditional Amazigh clothes, this young man carrying a notepad and pen excitedly sat down beside me. He was a university student from Japan who had been living with this Amazigh family for four months to learn about their culture. Perfect! Maybe he could enlighten me as to how these people sustain their lives on this rugged mountain top - surely there was more to it than mint tea.

Mint tea, a traditional Moroccan drink and symbol of hospitality. Photography: Erin Jankovich

The young man pointed out across the valley and said “see”. For a while, all I saw was an expanse of orange rock but eventually like a stereogram the landscape came to life. Those little black dots were goats, dozens of goats! He walked me to the trailhead and pointed at the pale green tufts across the landscape. Mint, rosemary, sage, thyme, and verbena – these aromatic plants were right beneath my nose. This dusty landscape wasn’t so dead after all. He explained that the Amazigh people have extensive knowledge of the medicinal properties of hundreds of plants that grow in the High Atlas, and women will take several hour journeys to sell herbs in the valley markets. I wanted to learn more, but I was reminded of the long trek back to Tinerhir. I said goodbye, and thanked them all for such generous hospitality.

Afternoon tea with Amazigh family. Photography: Erin Jankovich
Morocco is dominated by a mountainous interior, bordered with rich coastal plains to the west and Sahara desert to the east. Since coming home from my trip, I have learned that this unique geography falls within the Mediterranean basin, a global biodiversity hotspot teeming with endemic flora and fauna found nowhere else on the planet (Rankou et al. 2013). Morocco alone has 879 endemic plants, the majority of which are restricted to the High Atlas region (Rankou et al., 2013).

The rich biodiversity of the High Atlas has been known to the Amazigh people for thousands of years, but only recently have researchers and scientists begun to draw their attention to this unique area. In 2015, scientists used IUCN Red List criteria to assess the status of endemic Moroccan flora and determined that many species are at risk of extinction due to climate change and habitat degradation (Rankou et al., 2015). These scientists emphasized that mountainous regions such as the High Atlas are especially sensitive to changes in climate and should be a top priority for conservationists, but so far very little research has gone into understanding the vegetation dynamics of this region.

Fresh and dry plants used for medicinal purposes found in traditional markets (image from Bouiamrine, 2017).
Many plant species picked by the Amazigh are highly toxic and dangerous to humans if not used appropriately (Mouhajir et al., 2001). Anecdotal evidence through surveys and interviews have revealed that the Amazigh people, specifically senior women, are experts in distinguishing between medicinal herbs and continue to pass on this traditional knowledge from one generation to the next (Bouiamrine, 2017). Many Moroccans still rely on traditional medicine to maintain good health thus conservation of these endemic herbs is critical for both the lives of the Amazigh and Moroccan market economy (Bouiamrine, 2017).

An Amazigh woman journeys across rugged terrain to sell herbs in modern markets. Photography: Erin Jankovich
I know better now that not all hotspots of biodiversity look like lush tropical jungles, but what they do have in common is an abundance of unique species that are threatened with extinction. Internationally the Mediterranean Basin has been recognized as providing significant ecosystem function and I was pleased to find that the Moroccan government has set national targets to preserve biodiversity and inventory traditional knowledge by 2020 (CBD, 2011).

Who better than the indigenous people of the High Atlas to help us understand the historical distribution of endemic plants and potential range shifts induced by climate change? Through sensitive and purposeful strategies for interaction with the Amazigh people—like the young student sharing a tea in the mountain—we may find that complimenting science with traditional ecological knowledge is the key to saving these unique landscapes.

References
Bouiamrine, E.H., Bachiri, L., Ibijbijen, J., & Nassiri, L. (2017). Use of medicinal plants in Middle Atlas of Morocco: potential health risks and indigenous knowledge in a Berber community. Journal of Medicinal Plant Studies, 5(2), 388-342.
Convention on Biological Diversity (2011). Electronic source. Retrieved from: https://www.cbd.int/countries/targets/?country=ma
Mouhajir, F., Hudson, J.B., Rejdali, M., & Towers, G.H.N. (2001). Multiple antiviral of endemic medicinal plants used by Berber peoples of Morocco. Pharmaceutical Biology, 39(5), 364-374.
Rankou, H., Culham, A., Jury, S.L., & Christenhusz M.J.M. (2013). The endemic flora of Morocco. Phytotaxa, 78 (1), 1-69.
Rankou, H., Culham, A. ,Taleb, M.S., Ouhammou, A., Martin, G., & Jury, S.L. (2015). Conservation assessments and Red Listing of the endemic Moroccan flora (monocotyledons). Botanical Journal of the Linnean Society, 177, 507-575.

Friday, December 12, 2014

A changing world: Themes from the 2014 BES-SFE meeting in Lille #BESSfe


I attended the joint British Ecological Society/Société Française d’Ecologie (BES/SFE) meeting held in Lille, France, Dec. 9-12. I quite enjoy BES meetings, but this one felt just a little more dynamic and exciting. The meeting did a great job of bringing people together who otherwise might not attend the same meetings. The overall quality of talks was excellent and the impression was that labs were presenting their best, most exciting results. One thing that always fascinates me about meetings is the fact that emergent themes arise that reflect what people are currently excited about. Over the three days of talks, I felt that three emergent themes seemed particularly strong among the talks I attended:


1) Pollinators in a changing world

Photo by Marc Cadotte
There were a surprising number of talks focusing on human-caused changes to landscapes affect pollinator abundance and diversity. I am an Editor of a British Journal (Journal of Applied Ecology) and work on pollinator diversity has always been stronger in the UK, but there were just so many talks that it is obvious that this is an important issue for many people in the UK and Europe. Nick Isaac examined whether butterfly abundance was related to the abundance of host plants –which should be a measure of habitat quality. Plants that serves as hosts for caterpillars were more important than those that supply nectar to adults, presumably because the adults can better find resources. And specialist species were especially sensitive to host plant diversity.

Adriana De Palma gave a great talk on reanalyzing global patterns of bee responses to land-use and showed that biases in where research is done is influencing generalities. Bee communities in some well-studied regions appear more sensitive to land-use change and those regions with many bumblebees mask effects that on other types of bees. Bill Kunin examined patterns at a regional scale (UK) where a pollinator crisis was identified in the late 2000s and causes have been attributed to everything from land-use change to pesticide use to cell phones -to the second coming of Jesus. Habitat quality and flora resources do not seem to be that important at large scales, but there seems to be a strong effect of pesticide use. But at a smaller landscape scale, Florence Hecq showed that habitat heterogeneity within agricultural landscapes and the size of semi-natural grasslands were important for maintaining pollinator diversity. Changes in pollinator diversity have consequences for crop yield, as shown nicely by Colin Fontaine.
Photo by Marc Cadotte
 In a really interesting study, Olivia Norfolk showed that traditional agriculture practices by Bedouin minorities in Egypt enhanced pollinator abundance. Because their agricultural practices support high plant diversity, both wild and domestic plant species, pollinators fare better than in intense agriculture. Moreover, one of the most important crops, almonds, sees higher yield with higher plant diversity –though this effect is lost when there are a lot of introduced honeybees.



2) Effects of land-use on biodiversity

A number of other talks examined how human-caused changes influence biodiversity patterns and resulting functions across a number of taxa. Jonathan Tonkin examined a number of different types of species (plants, beetles, spiders, etc.) that occur along riparian habitats and showed that there weren’t concordant changes in richness, but there were simultaneous shifts in composition. Human stressed caused multiple communities to shift to very nonrandom community types. In Agricultural systems, Colette Bertrand showed that agriculture that changed frequently (e.g., crop rotation) supported more beetle species that systems where the same crops are planted year after year.

Human deforestation greatly changes many biodiversity patterns and we need to better understand these make sound conservation decisions. Cecile Albert examined land-use change and fragmentation in southern Quebec and showed that we can determine the importance of forest patches in human-dominated landscapes for the ability of species to move between large forested areas. Using her model she can identify where conservation and habitat protection should be focused. Nicolas Labriere studied how different forest changes influenced the delivery of ecosystem services, including carbon storage, diversity and soil retention. He showed that only intact forests were able to maximally deliver all ecosystem services.
 
From WWF

3) Species differences and dynamics at different scales

A major theme is how species differences are important for ecological processes, ecosystem function and conservation. I’ve argued elsewhere that we are heading into a paradigm shift in ecology, where we've moved from counting species to accounting for species. Wilfried Thuiller asked how well European reserves conserve different forms of biodiversity, namely functional and phylogenetic diversity. He prioritized species by their distinctiveness and range size so that the most important were functionally or phylogenetically unique and have a small range. Distinct mammals tend to not be well protected and the modern reserve system does not maximally protect biodiversity. This is most acute in eastern Europe where there is a order of magnitude less protected area than in western Europe.

Georges Kunstler argued that trait approaches to understanding competition are valuable because they can reduce the dimensionality of students, from all pairwise species interactions to relative simple measures of trait differences. He showed, using an impressive global forest dataset, that competition appears stronger when neighbour trees are more similar in their traits.

A number of talks examined if measures of species differences can explain biodiversity patterns. At very large scales, Kyle Dexter showed that phylogenetic diversity does not explain where species are across the neotropics. In some places species are in the same habitat as a close relative and sometimes with a distant relative. At smaller scales, talks explored trait or phylogenetic patterns Andros Gianuca, Anne Pilière and Lars Götzenberger all assessed the relative contributions of trait and phylogenetic differences to explain community patterns and all showed that phylogeny may be a stronger explanation than the traits they measured.


4) Species dynamics, coexistence and ecosystem function

Understanding tree growth and dispersal are key to predicting how forests will respond to environmental change and to successfully managing and conserving them. Sean MacMahon showed that the seasonality of tree growth is critical to modelling carbon flux in forests. He developed an ingenious set of modelling approaches to analyze daily tree diameter change and showed that growth is highly concentrated in the middle of the growing season, which is at odds with traditional conceptual models where tree growth is constant from spring to fall. Noelle Beckman examined tree dispersal and the consequence of losing vertebrate seed dispersers. She showed that reducing the number of seed dispersers results in low seeding survival because seedlings are locally very dense, instead of being dispersed, and seed predators and other enemies have an easier time finding them.

The mechanism most often cited by plant community ecologists is competition, but Christian Damgaard states that this simple mechanism is almost never tested. Further, models of competition are often based on numbers of individuals, but plants make such counts notoriously difficult. Instead he developed a very elegant model showing how plant height and horizontal cover feedback to competition. What he calls vertical density is a predictor of the following season’s horizontal cover. Competition is also key to observing a relationship between species richness and ecosystem function. Rudolf Rohr showed, using a series of Lotka-Volterra models that randomly assembling communities always results in a positive relationship between richness and function –which is why experiments often support this pattern. In natural communities, this relationship often disappears, and he shows that simulations with competitive sorting break this relationship.

Finally, Florian Altermatt examined whether the physical structure of stream networks influences the distribution of diversity in streams using protozoan and bacterial communities in series of connected tubes that look like a branch, and compared these to linear tubes. He found that diversity is highest in the interior branches (see image to the left), much like real rivers, and the linear system had no such pattern of diversity. He attributed part of this diversity gradient to competitive differences among species and differences in movement of the organisms.