Showing posts with label individual. Show all posts
Showing posts with label individual. Show all posts

Thursday, December 1, 2011

What should be the basic unit of community ecology, 2011.

Why intraspecific variation matters in community ecology Bolnick et al. 2011, Trends in Ecology and Evolution.

Intraspecific variation in gastropod
shell morphology (Goodrich 1934).
 There has been a long debate in community ecology on the fundamental unit, a debate on what Tansley described as the “necessity of first determining empirically our natural units”. In early years, it involved tension between Clements' and Gleason’s view of the plant community, either as a “superorganism” or simply as a conglomeration of co-occurring species. This latter, Gleasonian view won out, signaling a move towards the species-oriented approach that dominates community ecology today. In later years, there was a push to view the individual—not the species—as the fundamental unit, championed by people like Dan Simberloff. However, though this view has had some influence, it has never been mainstream.

 The basis of these debates about the basic unit is simple: do similarities matter more than differences? Recently, the argument that intraspecific differences are important and that community ecology should consider individuals has become much stronger. In “Why intraspecific variation matters in community ecology”, Bolnick et al. suggest that a species-level view of community ecology is an incomplete one, and that we should be aware of making simplifying assumptions about intraspecific variation (e.g. that it is minimal and species-level means are appropriate). Bolnick et al. state their hypothesis clearly:
  “… many models of species’ interactions implicitly assume that all conspecific individuals are effectively interchangeable. In this paper we argue that this assumption is misleading and that intraspecific trait variation can substantially alter ecological dynamics.” 
 To that end, the paper does an excellent job of identifying the key mechanisms by which intraspecific variation might be expected to alter ecological dynamics (especially as summarized in the paper's Table 1). Some of these mechanisms might be fairly ubiquitous. For example, when there are nonlinear relationships between trait values and interaction strengths, Jansen’s Inequality means that the amount of intraspecific variation around the species mean will alter the strength of that interaction. The mechanisms discussed make a convincing argument that intraspecific variation can alter ecological interactions and evolutionary dynamics.

However, a move to individual level ecology has many practical implications*: for example, it would require that we move beyond using average species-level demographic rates, dispersal abilities, and interaction strengths, since these miss important intraspecific variation; that phylogenetic trees be built to the level of the individual, requiring additional genetic information; and that perhaps fundamental changes be made to current coexistence theory. Possibly this would mean many more hours of fieldwork, more complex theory, and much more explanatory power is required. On the other hand, it could mean breakthroughs in how we understand longstanding ecological problems like ecosystem functioning, species diversity and coexistence, or trophic web structure.

For that reason, the fact that Bolnick et al. doesn’t demonstrate very clearly the gains or breakthroughs that could result from including intraspecific differences is a bit of a disappointment. Will we find that increasingly smaller amounts of variation are explained as we divide our units increasingly smaller? Or is the key to explaining community-level interactions found at the individual scale? Most of the examples in this paper are too simplistic to be useful, and for understandable reasons of space, there is little review of the literature (though they cite a number of important papers). That’s really too bad, since there are some subfields that have focused on intraspecific differences (for example, the ecosystem functioning literature), and their findings would contribute to the question of what makes intraspecific differences so promising for community ecologists. Despite that, when the mechanisms presented in Bolnick et al. are considered in combination with papers such as Crutsinger et al. 2006, Clark et al 2010, Albert et al. 2011, and Schindler et al. 2010 (just as a few examples), there is some tantalizing evidence suggesting that intraspecific variation can and does matter.

 *Although no doubt similar concerns about workload have accompanied any shift in approach throughout ecology's history. And certainly most shifts in ecological approach (spatial, phylogenetic, etc) only occur once the necessary methodological infrastructure was in place.