Friday, April 29, 2011

Ecological interactions and evolutionary relatedness: contrary effects of conserved niches

ResearchBlogging.orgOver the past several years a multitude of papers linking patterns of evolutionary relatedness to community structure and species coexistence. Much of this work has looked at co-occurrence patterns and looked for non-random patterns of relatedness. The key explanations of patterns has been that communities comprised of more distantly-related species is thought to be structured by competitive interactions, excluding close relatives. Alternatively, communities comprised of species that are closely related, are thought to share some key feature that allows them to persist in a particular set of environmental conditions or stress. This whole area of research is completely predicated on close relatives having more similar niche requirements then two distant relatives. This predication is seldom tested.In a recent paper in the Proceedings of the National Academy of Science, Jean Burns and Sharon Strauss examine the ecological similarity among 32 plant species and tested if evolutionary relationships offered insight into these similarities. The ecological aspects they examined were germination and early survival rates as well as interaction strengths among species. To assess how these were influenced by evolutionary relatedness, they planted each species in the presence of one of four other species varying in time since divergence from a common ancestor, creating a gradient of relatedness for each species. They found that germination and early survival decreased with increasing evolutionary distance. This surprising result means that species germinating near close relatives do better early on then if they are near distant relatives. The explanation could be that they share many of their biotic and abiotic requirements, and these conserved traits influence early success.

Conversely, when they examined interaction strengths over a longer period (measured as relative individual biomass with and without a competitor), they found that negative interactions were stronger among close relatives.

These two results reveal how evolutionary history can offer insight into ecological interactions, and that the mutually exclusive models of competitive exclusion versus environmental filtering do not capture the full and subtle influence of conserved ecologies. Evolutionarily conserved traits can explain both correlated environmental responses and competitive interactions.

Burns, J., & Strauss, S. (2011). More closely related species are more ecologically similar in an experimental test Proceedings of the National Academy of Sciences, 108 (13), 5302-5307 DOI: 10.1073/pnas.1013003108

Friday, April 15, 2011

The bellybutton, biodiversity reserve of the body

Although less recognized--and less glamourous--than most biodiversity hotspots, the human bellybutton harbours it own diverse collection of species, and these species tell us something about ourselves. That's the premise behind the Belly Button Biodiversity Project, which is getting some press for its large-scale sampling of bellybutton bacteria. For interesting discussion about where the data could lead, see Rob Dunn's (one of the researchers) website. His post, including the comments, hints at how much there is to learn about the ecology of human bacteria.

Update: Rob Dunn has now published a book "The Wild Life of Our Bodies", telling more stories of our changing relationships with other species.

Sunday, April 3, 2011

Carnival time.

The 34th edition of the Carnival of Evolution is hosted at Quintessence of Dust. Everything from the evolution of perfection to the evolution of small importance will be found there.

Friday, April 1, 2011

White-nose syndrome and wind turbines: why biodiversity matters

Linking ecosystem services to economic benefits is a vital step in connecting ecological research to policy and political action. The UN Environmental Programme’s The Economics of Ecosystems and Biodiversity (TEEB) initiative represents a concerted effort to draw attention to the economic benefits of biodiversity and cost of ecosystem degradation, and to bring together scientists, economists and policy-makers.

Accordingly, Boyles et al. (Nature, 2011) paint a troubling picture about the value of economic benefits that insectivorous bats provide to the North American economy, and the degree of extinction risk they currently face. The authors point out that bats are “among the most overlooked, yet economically important, non-domesticated animals in North America”, and their loss would cost North Americans more than 3.7 billion dollars/year. Given rapid declines in populations due to white-nose syndrome (over 1 million bats killed) and wind turbine fatalities (projected to reach up to 30,000-100,000 fatalities/year as wind turbine installations increase), the authors suggest action can't wait.

Hopefully using the universal language of money helps translate scientific knowledge into political action. After all, bats are only one group of species: imagine the true cost of current rates of biodiversity loss and ecosystem destruction, from the smallest microorganism to the largest megafauna. The total must be staggering. And so, it seems, is the scale of action required to halt this decline.