Saturday, February 27, 2010

New Tool Reveals Where Ticks Eat Breakfast


You have a much greater chance of getting sick from a tick bite today than you did 30 years ago. But a new tool might allow researchers to better understand why more ticks are making people sick.

“If you’re a health inspector and a bunch of people get food poisoning, the first thing you’d want to know is where they ate last. If you’re a disease ecologist and a bunch of ticks have a pathogen, the first thing you’d want to know is where the ticks ate last,” said Brian Allan, a post-doctoral researcher at the Tyson Research Station in St. Louis.

Allan led a team of researchers in developing a novel technology that probes the genetic contents of ticks’ gut. The tool can determine which wildlife species provided the tick’s last meal and which pathogens came along with that meal.

In the first study to use the new technology, Allan and his colleagues focused on several rapidly emerging diseases transmitted by the lone star tick. These include two pathogens responsible for a potentially fatal bacterial infection known as ehrlichiosis [ur-lick-ee-oh-sis]. In Missouri, over 200 cases of ehrlichiosis were documented last year.

Allan et al.'s study showed that about 80 percent of pathogen-positive ticks had fed on white-tailed deer. They also found that squirrels and rabbits were capable of infecting ticks at a higher rate than deer. However, since the lone star tick feeds on squirrels and rabbits less frequently, they account for a smaller percentage of infection.

Allan and his colleagues hope that the technique will shed light on theoretical questions in the field of ecology. They are especially interested in testing whether biodiversity is good for your health, a hypothesis known as “the dilution effect.”

Allan, B. F., L. S. Goessling, G. A. Storch, and R. E. Thach. 2010. Blood meal analysis to identify reservoir hosts for Amblyomma americanum ticks. Emerging Infectious Diseases 16: 433-440. DOI: 10.3201/eid1603.090911

Monday, February 22, 2010

How can evolution inform conservation decisions?

First of all, let me apologize for the lack of blog posts over the past 2 weeks, I've been busy visiting the Olympics and reading a couple of hundred blogs, judging them for the Research Blogging awards.

ResearchBlogging.orgThe conservation of biological diversity is a major imperative for biologists. International agreements such as the Convention on Biological Diversity and intergovernmental exercises, such as the Millennium Ecosystem Assessment, call upon scientists to provide evidence on the current state of biological diversity and to evaluate solutions for reducing diversity and ecosystem function loss. Critical to these efforts have been the work of ecologists, conservation biologists and ecological economists. However, seemingly missing from the conversation about the state of biodiversity knowledge has been evolutionary biologists. Are they primarily concerned with describing historical processes and mechanisms of biological change, or do they have substantive knowledge and ideas that should be viewed as a critical component of any scheme to conserve biological diversity?

In a recent paper in Evolution, Hendry and a number of coauthors convincingly make the case tha
t evolutionary biology is a necessary component for conservation. Evolution offer four key insights that should inform conservation and policy decisions. First, they point out that evolutionary biologists are in the business of discovering and documenting biodiversity. They are the primary drivers behind long-term, sustained biological collections, because they need to know what exists in order to better understand evolutionary history. With millions of species awaiting scientific discovery, their efforts are critical to measuring biodiversity. But not only are they discovering new species and enumerating them, they are uncovering their evolutionary relationships, which gives conservationists better information about which species to prioritize. What Vane-Wright famously called 'the agony of choice', with limited resources, we need to prioritize some species over others, and their evolutionary uniqueness ought to be a factor. More than this, evolutionary biologists have developed pragmatic tools for inventorying and sharing data on biodiversity at all levels, from genes to species, which is available for prioritization.

The second key insight is that by understanding the causes of diversification, we can better understand and predict diversity responses to environmental and climatic change. By understanding how key functional traits evolve, we can develop predictions about which species or groups of species can tolerate certain perturbations. Further, research into how and why certain evolutionary groups faced extinction can help us respond to the current extinction crisis. For example, the evolutionary correspondence between coevolved mutualists, such as plants and pollinators, can be used to assess the potential for cascading extinctions. These types of analyses can help identify those groups of related species, or those possessing some trait, which make species more susceptible to extinction.

Thirdly, evolution allows for an understanding of the potential responses to human disturbance. Evolutionary change is a critical part of ecological dynamics, and as environment change can result in reduced fitness, smaller population sizes and extinction, evolution offers an adaptive response to these negative impacts. Knowing when and how populations can evolve is crucial. Evolutionary change is a product of genetic variation, immigration, population size and stochasticity, and if the ability to evolve to environmental change is key for persistence, then these evolutionary processes are also key.

Finally, evolutionary patterns and processes have important implications for ecosystem services and economic and human well-being. Both genetic and evolutionary diversity of plant communities has been shown to affect arthropod diversity, primary productivity (including work by me) and nutrient dynamics. Thus understanding how changes in diversity affect ecosystem processes should consider evolutionary processes. Further, exotic species are often cited as one of the major threats to biodiversity, and evolutionary change in exotics has been shown to increase exotic impacts on native species.


All together, these key reasons why evolution matters for conservation, mean that developing sound management plans requires considering evolution patterns and processes. We can use evolution to our benefit only if we understand how evolution shapes current dynamics. The challenge to evolutionary biologists is the same as it was for ecologists perhaps 15 to 20 years ago, to present their understanding and conservation ideas to a broader audience and to engage policy makers. To this end, the authors highlight some recent advances in incorporating evolutionary views into existing biodiversity and conservation programmes –most notably into DIVERSITAS.


Just like ecological processes and dynamics cannot be fully understood without appreciating evolution ancestry or dynamics, developing an extensive, expansive conservation strategies must take into account evolution. I hope that this paper signals a new era of a synthesis between ecology and evolution, which produces precise, viable conservation strategies.


Hendry, A., Lohmann, L., Conti, E., Cracraft, J., Crandall, K., Faith, D., Häuser, C., Joly, C., Kogure, K., Larigauderie, A., Magallón, S., Moritz, C., Tillier, S., Zardoya, R., Prieur-Richard, A., Walther, B., Yahara, T., & Donoghue, M. (2010). EVOLUTIONARY BIOLOGY IN BIODIVERSITY SCIENCE, CONSERVATION, AND POLICY: A CALL TO ACTION Evolution DOI: 10.1111/j.1558-5646.2010.00947.x

Wednesday, February 10, 2010

Research blogging awards; and thanks

Research Blogging Awards 2010Hi all, nominations for Research Blogging's annual awards will close Feb. 11, so be sure to nominate any research blogs you think deserve consideration. The top prize is $1000, and there are several smaller, field-specific awards as well. A panel of judges (with me being a member) will create a short list of blogs for each category and registered users on Research Blogging will be able to vote for the winners.

And a thank you to whoever nominated the EEB and Flow.

Monday, February 8, 2010

Predator-human conflict: the emergence of a primordial fear?

There is something terrifying and at the same time captivating about the idea of a large, wild, mysterious predator. The very idea that a large predator is near by makes us feel vulnerable. Every year, news stories about wild animal attacks appear in numerous publications and on many television shows. Human death at the fangs or claws of a wild beast is at the heart of many legendary stories and probably sown into the fabric of our being by millennia of ever present risk from large predators. This characteristic of our human experience, I think, dictates our response to animal attacks. Stories of animal attacks are usually concluded with statements about having or attempting to track down and destroy the guilty animal.

Such is the case for three recent animal attacks in Canada. In late October, 2009 in Nova Scotia, a raising 19-year old folk singer was killed by a couple of coyotes while hiking. It is difficult to find meaning in such a horrendous death, but the narrative, told by reporters, was essentially to rest assured that one of the coyotes had been killed and the other was being tracked and would be destroyed. There were two cougar attacks in early January, 2010 in British Columbia, that basically ended with the same reassurance. In the first, a boy was attacked and his pet golden retriever courageously saved his life. A police officer arrived a shot the cougar which was mauling the dog -an obviously legitimate response, and the news story again reassures us that the animal was destroyed. And don't worry the hero dog survived. In the second cougar attack, another boy was attacked, and this time his mother saved his life. But again the story narrative ended by reassuring us that the guilty cougar, and another cat for good measure, were destroyed the next day.

After reading these stories, I asked myself two things. Why is our response to destroy predators that attack? And why do we need to be reassured that this has happened? In defence of the predators, they are just doing what their instincts tell them to do, and most often their only mistake is that they selected their prey poorly. But the reality is that there are only 2-4 cougar attacks per year and only 18 fatalities over the past 100 years. Why do we fear such a low probability event? In contrast, automobile accidents are the leading cause of death in children under 12 in North America. Thousands of people die, and millions injured in car accidents every year in North America. Recently, in Toronto, were I live, 10 pedestrians were killed in 10 days, yet my heart doesn't race when I cross a street. If our fears and responses to human injury and death reflected the actual major risks, we would invoke restrictive rules regarding automobile use.

We believe that we can live with nature in our backyard. But when that close contact results in an animal attack, human fear seems to dictate an irrational response. Do we really expect predators to obey our rules? Can we punish them enough to effectively tame them? We cannot, and I hope that our approaches to dealing with human-animal conflict can better deal with animal attacks, in a way that does not subjugate large predators to whims of our fears.

Wednesday, February 3, 2010

The evolution of a symbiont

ResearchBlogging.orgThe evolution of negative interactions seems like a logical consequence of natural selection. Organisms compete for resources or view one another as a resource, thus finding ways to more efficiently find and consume prey. However, to me, the natural selection of symbiotic or mutualistic interactions has never seemed as straight forward (expect maybe the case where one species provides protection for the other, such as in ant-plant mutualisms). A specific example is the rise of nitrogen-fixing plants, who supply nutrients to bacteria called rhizobia capable of converting atmospheric nitrogen into forms, such as ammonia, usable to the plant host. Not only has this symbiosis evolved, but has seemed to evolve in very evolutionarily distinct lineages. The question is, what are the mechanisms allowing for this?

In a recent paper, Marchetti and colleagues answer part of the question. They experimentally manipulate a pathogenic bacteria and observe it turning into a symbiont. They transferred a plasmid from the symbiotic nitrogen fixing Cupriavidus taiwanensis into Ralstonia solanacearum and infected Mimosa roots with it. Plasmid transfer among distinct bacteria species is common and referred to horizontal genetic transfer (as opposed to vertical, which is the transfer to daughter cells). The presence of the plasmid caused R. solanacearum to quickly evolve into a root-nodulating symbiont. Two regulatory genes lost function, and this caused R. solanacearum to form nodules and to impregnate Mimosa root cells.

This extremely novel experiment reveals how horizontal gene transfer can supply the impetus for rapid evolution from being a pathogen to a symbiont. More importantly it reveals that sometimes just a few steps are required for this transition and how distantly-related bacterial species can acquire symbiotic behaviors.

Marchetti, M., Capela, D., Glew, M., Cruveiller, S., Chane-Woon-Ming, B., Gris, C., Timmers, T., Poinsot, V., Gilbert, L., Heeb, P., Médigue, C., Batut, J., & Masson-Boivin, C. (2010). Experimental Evolution of a Plant Pathogen into a Legume Symbiont PLoS Biology, 8 (1) DOI: 10.1371/journal.pbio.1000280