Tuesday, August 25, 2009

March of the polyploids!

ResearchBlogging.orgSpeciation by polyploidy (see here for a general description of polyploidy) is one of the mechanisms of speciation and evolutionary diversification. We all learn about it in Bio 101, right after allopatry and sympatry. It is thought to be an especially important driver of speciation in plants, and anecdotal evidence, such as the origination of the invasive polyploid, Spartina anglica in the UK in the 1800's, reinforced that view. But how important has been unanswered until now.

In a new publication in PNAS by Wood et al. -from the Loren Rieseberg lab (one of the best lab homepages BTW) this questions has been answered. The authors go through all available chromosome counts on the Missouri Botanical Garden's Index to Plant Chromosome Numbers, and assess the proportion of polyploid species. They find that about 15% of all angiosperm speciation events coincided with an increase in chromosome number (and about 30% of fern species). Further, about 35% of all genera contain polyploids. Looking across the phylogeny of major plant groups, they find that all major lineages, except Gymnosperms, have significant proportions of polyploids (again with ferns have the greatest proportion). Polyploidy is a ubiquitous feature of plant diversity and a major driver of plant speciation. And now we can quantify just how important.

Wood, T., Takebayashi, N., Barker, M., Mayrose, I., Greenspoon, P., & Rieseberg, L. (2009). The frequency of polyploid speciation in vascular plants Proceedings of the National Academy of Sciences, 106 (33), 13875-13879 DOI: 10.1073/pnas.0811575106

Tuesday, August 18, 2009

Unifying invader success and impact

ResearchBlogging.orgSomething that has continuously bothered me about our collective narrative concerning invasions has been the conflicting processes determining invader success and impact. Numerous studies (including some of my own) show that invaders are successful often because they are different from residents. That is, they are thought to occupy some unique niche. However, occupying a unique niche means that competition is minimized and these successful invaders should have relatively low impact on residents. Conversely, species that have large impacts are thought to be superior competitors, but why are they able to be so successful?

In a new paper in the Journal of Ecology, Andrew MacDougall, Benjamin Gilbert and Jonathan Levin use Peter Chesson's framework where ability for two species to coexistence (or conversely the strength of competitive exclusion) is a process relative to two factors -the magnitude of fitness differences and the degree of resource use overlap. Here competitive exclusion is rapid if species have a large fitness difference and high resource overlap, and slow if fitness differences are low. Species that are successful because of reduced resource overlap likely have little impact unless there are large fitness inequalities.

If we then view the invasions process on a continuum (see figure), then by determining basic fitness and resource use, we can predict success and impact. This is an exciting development and I hope it inspires a new generation of experiments.

MacDougall, A., Gilbert, B., & Levine, J. (2009). Plant invasions and the niche Journal of Ecology, 97 (4), 609-615 DOI: 10.1111/j.1365-2745.2009.01514.x

Thursday, August 6, 2009

Macroecology is dead, long live macroecology!

I went to a session on a macroecology yesterday, which featured some wonderful speakers, and came away with an unsure feeling about this field. The Session started off with a fantastic talk by Rob Dunn on how macroecologists differ on what the main mechanisms are for explaining diversity patterns. He argued that perhaps the complexity of natural and human-altered systems make simple generalizations not very fulfilling. Next Lauren Buckley showed how species turnover had complex relationships with broad environmental changes and that species turnover patterns are better correlated with other species turnover then with the environmental variables we think drive the patterns. Next Brian McGill tried to make the case for a truly unified theory. He walked through several general models of random species packing, showing that some models fit observed data very well. I was impressed by the data/model fits but am skeptical of a general theory which lacks biological mechanisms. My view of a scientific theory is that it ought to contain basic mechanisms and that a unified theory should explain patterns and processes at multiple scales. That said, I also think McGill has done more to forward the field than almost any other younger ecologist. In Allen Hurlbert's talk, he nicely showed how independently accounting for energy and area can provide a better basis to constructing and understanding species-area relationships. The basic reason is that area and energy availability differentially affect the number of individuals.

Back to my real life tomorrow!

Wednesday, August 5, 2009

Pleasant invasions surprise

Normally I run around ESA looking for talks that have the best potential to inform or entertain me. This time around I decided to go to a session on invasions and communities and settle in for the long haul. Am I glad I did. I was afraid the session would be dominated by similar sounding talks, but instead each talk was wildly interesting and different. Talks included looking at the genetic variability of the dominant native resident as a proxy for niche preemption. Another good one looked at the role of propagule pressure for an understory invasion into tropical dry forests -I seldomly hear about invasions into these ecosystems. Next was a look at how invaders behave over long term successional trajectories and they by and large appear to follow native trends. Next was a great modeling talk where individual-based models and riverine networks were used to assess the role of distrubance and trait differences in invasion dynamics. The final one I saw was on how to potentially restore Californian serpetine plant communities using little more that gravel and a few chemicals, with the goal of reintroducing extirpated butterflies, which have not been able to cope with the shift to exotic-dominated grasslands.

I am looking forward to more great talks!

Tuesday, August 4, 2009

Species interactions & evolution

Hi from ESA Albuquerque!

I've been in the organized session on species interactions and evolution all morning and there were some great talks (e.g., Silvertown, Ackerly, Cavender-Bares, etc.). But I think what really got me excited were some of the questions after each talk. Following Jonathan Silvertown's talk, Steve Hubbell asked some questions that get to the heart of addressing what phylogenies mean for community assembly. Silvertown showed that within plots, species of a large South African family of plants in the Fynbos seemed to spatially segragate according to hydrological niches and that within these plots there was a lack of phylogenetic signal in this niche. Hubbell then asked two critical questions: How many other species (in other families) co-occur in these niches and if related species have similar niches at a larger scale. To me this is at the core of uderstanding how phylogenies inform our understanding of community assembly. Basically, what haven't we measured? If we include all sister species into a phylogeny, do we change our understanding of the processes structuring communities?

More later!